[2]

CH5

SECTION A

(ii) Must clearly show which atoms are bonded and the 3D structure 1 mark each (2)

(b) (i)
$$K_{p} = \frac{P_{PCI3}P_{CI2}}{P_{PCI5}}$$
 do not accept if [] included [1]
(ii) I. 1.3×10^{5} (Pa) [1]
II. $P_{PCI5} = 3.0 \times 10^{5} - 1.3 \times 10^{5} = 1.7 \times 10^{5}$ (1) (ecf from part I)
 $K_{p} = (1.3 \times 10^{5} \times 1.3 \times 10^{5}) / 1.7 \times 10^{5} = 9.9 \times 10^{4}$ (1)
Pa (1) [3]
III. Endothermic as equilibrium shifts to products when temperature increases [1]
(c) SiCl₄ + 2H₂O \rightarrow SiO₂ + 4HCl OR
SiCl₄ + 4H₂O \rightarrow Si(OH)₄ + 4HCl (1)

Silicon has available empty d-orbitals whilst carbon does not / Silicon can expand its octet whilst carbon cannot (1) [2]

Total [16]

PMT

2. (a)
$$2 \times (0) + 3 \times (-394) - (-826) - 3 \times \Delta H^{\theta}_{f}(CO) = -23 (1)$$

 $2 \times (\Delta H^{\theta}_{f}(Fe)) + 3 \times (\Delta H^{\theta}_{f}(CO_{2})) - (\Delta H^{\theta}_{f}(Fe_{2}O_{3})) - 3 \times \Delta H^{\theta}_{f}(CO) = -23 (1)$
 $-1182 + 826 + 23 = 3 \times \Delta H^{\theta}_{f}(CO)$
 $-333 = 3 \times \Delta H^{\theta}_{f}(CO)$
 $-111 \text{ kJ mol}^{-1} = \Delta H^{\theta}_{f}(CO) (1)$ [3]

(b) Gases have higher entropies than solids as the molecules have a greater degree of freedom / disorder [1]

(c)
$$\Delta G = \Delta H - T \Delta S = -23 - (298 \times 9/1000)$$
 (1)[2] $= -25.7 \text{ kJ mol}^{-1}$ (1)[2](ii)A reaction is feasible when ΔG is negative (1)No temperature exists where ΔG is positive / ΔG is negative at all temperatures (1)(iii)Higher temperature used to increase rate of reaction(1)[1]

Total [9]

3.

+1 occurs due to inert pair of s-electrons (1) Inert pair effect becomes more significant down the group (1)

[2]

(b) (i)

(a)

В	Н	
78.14	21.86	
10.8	1.01	
7.235	21.644	(1)
1	3	

			Empirical formula = $BH_3(1)$	[2]
	(ii)	Nun	nber of moles = $1/22.4 = 4.46 \times 10^{-2}$ moles (1)	
		M _r =	= 1.232 / 4.46 × 10 ⁻² = 27.6 (1)	
		Mol	ecular formula = $B_2H_6(1)$	[3]
(c)	Outer	r/valer	nce shell of electrons is not full / does not have an octet	[1]
(d)	B_5H_9	+ 15	$H_2O \rightarrow 5H_3BO_3 + 12H_2$	[1]
(e)	The c	compo	ound is less stable than the elements	[1]
(f)	Any 3	3 from	4 points for (1) each	
	All atoms the same in graphite / BN alternate in boron nitride (1) Atoms in layer of BN lie above each other but are not in graphite (1) B—N bonds are polarised (or indicated dipole) but graphite is non-polar (1) p-electrons in BN are localised but in graphite are delocalised (1) [3]			
	Q	WC	Organisation of information clearly and coherently; use	e of specialis

- QWCOrganisation of information clearly and coherently; use of specialist
vocabulary where appropriate[1]
- (g) Mass number = 7 Atomic number = 3 [1]

Total [15]

SECTION B

4.	(a)	Filtrati	on	[1]		
	(b)	MnO ₄ -	+ $8H^+$ + $5e^- \rightarrow Mn^{2+}$ + $4H_2O$	[1]		
	(c)	(i)	Carbon O.S. at start = +3; Carbon O. S. at end = +4	[1]		
		(ii)	$2MnO_4^- \ \ + \ \ 16H^+ \ \ + \ \ 5C_2O_4^{\ 2-} \ \rightarrow \ \ 2Mn^{2+} \ \ + \ \ 8H_2O \ \ + \ \ 10CO_2$	[1]		
	(d)	Colour	r change of manganate(VII) is used to indicate the change	[1]		
	(e)	Volum	e of manganate(VII) = 27.92 cm^3 (1)			
		Moles	manganate = $27.92 \times 0.020 / 1000 = 5.584 \times 10^{-4} mol (1)$			
		Moles	Moles oxalate = $5.584 \times 10^{-4} \times 5/2 = 1.396 \times 10^{-3}$ mol (1)			
		Conce	entration = $1.396 \times 10^{-3} / 25 \times 10^{-3} = 0.0558 \text{ mol dm}^{-3}$ (1)	[4]		
	(f)	(i) <i>K</i> _a =	$=\frac{[H^+][HCOO^-]}{[HCOOH]}$	[1]		
		(ii)	$[H^+]^2 = K_a \times [HCOOH] = 1.8 \times 10^{-4} \times 0.2 = 0.36 \times 10^{-4} (1)$			
			$[H^+] = 6.0 \times 10^{-3} \text{ mol dm}^{-3} (1)$			
			pH = –log [H⁺] = 2.22 (1)	[3]		
		(iii)	iii) A buffer keeps the pH almost constant when small amounts of acid or l are added (1)			
			$HCOOH \rightleftharpoons HCOO^- + H^+(1)$			
			Adding acid shifts the equilibrium to the left which removes H^+ / Adding base removes H^+ shifts equilibrium to right which replaces H OR answer in terms of H^+ reacting with methanoate from sodium methanoate when acid added (1) and methanoic acid replace when base removes H^+ (1)	H⁺ (1) cing H⁺		
			MAX 3	[3]		
			QWC Selection of a form and style of writing appropriate to purpo complexity of subject matter	ose and to [1]		
	(g)	(i)	Orange to green	[1]		
		(ii)	CrO ₄ ²⁻ (1) Yellow (1)	[2]		
				Total [20]		

24

(a)	Lead(I	I) io	dide or $Pbl_2(1)$	Bright ye	llow (1)		[2]
(b)	$2Cu^{2+} + 4l^{-} \rightarrow 2Cul + l_{2}(1)$						
	The precipitate is copper(I) iodide (stated or clearly indicated by state symbols) (1) [2]					ymbols) (1)	
(c)	Bromi	Bromine has a more positive E^{θ} than iodine so it is a stronger oxidising agent (1)					
	Bromi	ne is	able to oxidise	iodide (1)			
	Bromine has a less positive E^{θ} than chlorine so it is a weaker oxidising agent (1						gent (1)
	Bromine is not able to oxidise chloride (1)						
	MAX 3						
	OR Calculate EMF for each reaction (1 each) and state that positive EMF mea reaction is feasible (1) [3]					MF means [3]	
	QWC	Le me	gibility of text, ac aning	ccuracy of	spelling, pu	inctuation and grammar,	clarity of [1]
(d)	1 marł KHSO	k for	each two produ HI H₂S S	tts or obs O_2 S	ervations I_2	[MAX 2 for products]	
	Yellow	/ sol	d rotten eg	g smell	steamy fu	mes	
	Black solid or brown solution or purple fumes						
	MAX 3	3					[3]
(e)	(i)	Me Ra	asure time take æ = 1 ÷ time (1)	n for a suc	dden colour	change (1)	[2]
	(ii)	I.	pH 1 has a con	centration	ı of H⁺ ten tir	mes higher than pH 2.	[1]
		II.	Order with resp Order with resp Order with resp Rate = k [H ₂ O ₂]	Dect to H_2C Dect to $I^- =$ Dect to $H^+ =$ $[I^-](1)$	D ₂ = 1 (1) 1 (1) = 0 (1) [MAX	K 2 for the stated orders]	[3]
		III.	<i>k</i> = 0.028 (1) m	nol ^{−1} dm ³ s⁻	⁻¹ (1) [ecf fro	m rate equation]	[2]
		IV.	Rate equation value of the rat	is unchar e constan	nged and ind	creasing temperature inc	creases the [1]

Total [20]

GCE CHEMISTRY MS - SUMMER 2015

5.